
JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT, Vol. 15.1, July 2021 

66 

USING MACHINE LEARNING ON ENCRYPTED DATA 

Catalin Emanuel CIOBOTA 1 

 Abstract: This post discusses cutting-edge cryptography techniques. Do not use 
examples in this blog post for production applications. Always consult a 
professional cryptographer before using cryptography. 

In the following lines we will discuss data encryption techniques using advanced 
encryption techniques. The examples presented are not recommended for use in 
production applications. Before applying encryption to data applied to the services 
of a professional. 

Keywords: machine learning, cryptography. 

Introduction 

The present research applies to new machine learning applications developed for 
example with Flux.js and which are intended to be applied and implemented in 
other applications or users. How can we do that? There are several types and the 
most common would be the implementation of API functions or we send the model 
to users and advise them to launch it locally using their data. There are a number of 
problems using this technique: 

1. Machine learning models are large and users may not have as much storage 
space or may run learning models. 

2. Models change frequently and we do not want to send the new model to every 
change. 

3. New models are difficult to generate, both human resources and hardware 
resources are needed that the development company wants to recover by billing 
these services to users. 

The accepted solution is to declare the API function on the cloud. This type of 
machine learning business offered as a service is in vogue now. Many types of 
such products have appeared in recent years, and can be found on cloud platforms. 
The problem that arises is: is the data of those who use such services secure? 
Remember the user sends the data to be processed on a remote server. Is the server 
reliable? There are ethical and legal issues that govern how this type of data can be 
used. For example, in finance or even in medical services, sending data to third 
parties cannot be done. How can we solve this type of problem? 

                                                           
1 Drd,, Valahia University, Targoviste, ciobota_catalin@yahoo.com 



JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT, Vol. 15.1, July 2021 

67 

New research in this area may make it possible to perform calculations using data 
without decryption. We will make an example in which someone sends data 
(images) to an API function in the cloud, which will execute the machine learning 
model and receive the encrypted response. The user data was not decrypted, the 
one who manages the server does not have access to the data, these being 
encrypted, nor can the prediction mode be calculated. How will we do this? We 
will use a machine learning model to recognize letters and numbers from 
handwriting (the MNIST set will be used). 

HE generally 

The calculation used to calculate encrypted data is called "secure calculation" and 
is widely used in research, with many applications and techniques for various 
scenarios. In this article we will use the "homomorphic encryption" technique. In 
the applications that use this technique the following operations are used: 

 

The first functions are simple functions, common to those who use asymmetric 
cryptography. The last function is the important one. It processes the f functions on 
the encryption side and displays another encrypted value depending on the function 
evaluation. The property itself is what provides the name of the homomorphic 
calculus. The evaluation function is displayed according to encryption: 

f (decrypt (priv_key, encrypted)) == decrypt (priv_key, eval (eval_key, f, 
encrypted)). 

The functions f are accepted in the calculation depending on the encryption and 
operations. For a single f a "partially homomorphic" scheme is used. If the function 
f is used as a series of arbitrary circuits, the calculation will be called "somewhat 
homomorphic" or "completely homomorphic" if such a circuit is unlimited. It is 
even possible to transform certain data through a fully "homomorphic" technique 
and such a technique is called "bootstrapping". The completely homomorphic 
encryption technique is recent and was published by Craig Gentry2 in 2009. There 
are also commercial solutions that implement this technique. Example: Microsoft 
Seal3 and Palisade4. We will use CKKS encryption in examples. 

 

                                                           
2 https://www.cs.cmu.edu/~odonnell/hits09/gentry-homomorphic-encryption.pdf 
3 https://github.com/microsoft/SEAL 
4 https://palisade-crypto.org/ 



JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT, Vol. 15.1, July 2021 

68 

CKKS High Level 

CKKS5 (named after Cheon-Kim-Kim-Song, the authors of the 2016 paper that 
proposed it) is a homomorphic encryption scheme that allows homomorphic 
evaluation of the following primitive operations: 

•  Elementary addition of the length n vectors of complex numbers 

•  Elementary multiplication of length n complex vectors 

•  Rotation of elements in the vector (in the direction of changing the circulation) 

•  Complex conjugation of vector elements 

Condition n here is structured according to the Security and precision applied. It 
has a high standard. The example applied by us will have the value of 4096 - we 
must consider the security, but also the scaling in log n. 

Operations using CKKS are complex. They give approximate results and users 
must check accurately so as not to affect the correctness of the results. 

This kind of restriction is not uncommon for developers. Applications that use 
GPUs calculate data using number vectors. Floating point numbers use algorithm 
selection, use multithreading and this leads to a complexity of implementation. 

In the following we will try to apply and implement the operations proposed in 
Julia in order to show how we can use the library in REPL. 

 

                                                           
5 https://eprint.iacr.org/2016/421.pdf 



JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT, Vol. 15.1, July 2021 

69 

 



JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT, Vol. 15.1, July 2021 

70 

 

It can be seen that CSS is different from ciphertext. I gave a 3-digit ciphertext on a 
larger scale. We would like to reduce these things before other calculations or run 
out of "space". It can be done as follows: 

 



JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT, Vol. 15.1, July 2021 

71 

 

Modswitch (short for module switching) can reduce the size of the encrypted data 
module, and will lead to the fact that we cannot always do so. 

ℛ # Remember the ring we initially created 
ℤ₁₃₂₉₂₂₇₉₉₇₅₆₈₀₈₁₄₅₇₄₀₂₇₀₁₂₀₇₁₀₄₂₄₈₂₅₇/(x¹⁶ + 1) 
 
 ToyFHE.ring(csq_smaller) # It shrunk! 
ℤ₁₂₀₈₉₂₅₈₂₀₁₄₄₅₉₃₇₇₉₃₃₁₅₅₃/(x¹⁶ + 1) 
 
 

There is one last operation we will need: rotations. Like switching the above keys, 
it requires an evaluation key (also called a galois key): 

 



JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT, Vol. 15.1, July 2021 

72 

 

I showed how to use the HE library. We will have to build the neural network 
application using these functions, and form it. 

The machine learning model 

To understand machine learning models or use the FLUX.js6 library you can follow 
tutorials on Julia Academy7. We will continue to use the convolutional neural 
network model in the Flux zoo. We will have the same data preparation models and 
we will modify the models. 

 

                                                           
6 https://fluxml.ai/Flux.jl/stable/ 
7 https://juliaacademy.com/p/introduction-to-machine-learning 



JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT, Vol. 15.1, July 2021 

73 

 

The model described is the one applied in the work "Secure Outsourced Matrix 
Computation and Application to Neural Networks"8. It will use the same scheme 
model but with the following differences: 

1. The paper encrypts the model, we will not do it for simplicity 

2. In our case we will apply vectors in each layer 

3. In our case we will have a higher accuracy (approximately 98.6% compared to 
98.1%). 

Another thing is given by the activation functions x. ^ 2. If in the other models tanh 
or relu functions are used, light functions in cases like plain text, in the case of 
encryption functions they become very difficult to apply (we have to find 
polynomial approximation). Softmax was removed from the base model but I 
applied a logitcrossentropy function. It could also be done with softmax and we 
could do it with decryption on the client. 

Performing the operations efficiently 

In this chapter we will explain the type of operation that can be done. We can 
apply: 

• Convolutions 

• Square in the element 

• Multiplication of the matrix 

Square in the element is an easy function as we can read above. We will talk in the 
following about the other two. The examples will be based on a size of 64 (element 
vector 4096). 

 

                                                           
8 https://eprint.iacr.org/2018/1041.pdf 



JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT, Vol. 15.1, July 2021 

74 

Convolution 

What is convulsion and how does it work? Take a 7x7 window (as in the example) 
from the initial matrix and each element in the window will be multiplied by an 
element in the convolution mask. Move the window over others (for example step 
3 - so we will move 3 elements) and repeat the process (having the same mask). An 
example of a 3x3 convolution with step (2,2) can be seen below. Blue - input and 
green - output. 

 
Figure 1 https://github.com/vdumoulin/conv_arithmetic 

We can see that we have convolutions on 4 channels. The process will be repeated 
3 times with various masks. I checked what we need to do and now apply. A 
preprocessing model can be made per client to simplify the works. 

What will we do: 

We will divide and preprocess several convolution models (we will extract 7x7 
models from the images), and we will obtain 64 matrices of size 7x7. We will add 
the same position in each window in a vector and we will get a vector with 64 
elements in each image. For a 64x64 element vector a batch of 64 (49 64x64 size 
matrices) will be obtained. The convolution will become a multiplication. We will 
scalarly multiply the whole matrix with the appropriate elemental mask and we will 
thus obtain the convolution or more precisely the result. It can be implemented as 
follows: 

 



JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT, Vol. 15.1, July 2021 

75 

 

A keyswitch will not be required because the weights are public and we have not 
extended the ciphertext. 

Matrix multiply 

One of the main elements in multiplying matrices is that we can rearrange 
the indices. We will take into account the fact that the elements of the matrix that 
belong to the vector can be sorted. In case of moving the vector with a multiple 
size of the row size, an interesting effect will be obtained, namely the rotation of 
the columns. This is a sufficient hypothesis in multiplying the matrix. We will 
show the following below: 



JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT, Vol. 15.1, July 2021 

76 

 

Making it nicer 

We can make things look even better. The code works and let's show its running 
(without configuring the parameters): 

 



JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT, Vol. 15.1, July 2021 

77 

 

We will propose some abstractions that will make things easier. We will move 
from encryption and machine learning to code creation and implementation. Julia 
allows abstractions and we will build some. The whole convolution extraction 
process can be encapsulated, bringing it to a customized matrix: 

 



JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT, Vol. 15.1, July 2021 

78 

 

Here I used BlockArrays to represent the 8x8x4x64 matrix as 4 8x8x1x64 matrices. 
It can be seen that we already have a more beautiful model on the unencrypted 
matrices: 

 



JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT, Vol. 15.1, July 2021 

79 

 

How do we implement things in encryption? We will have to do two operations: 

1. Create the ExplodedConvArray structure and we will get an encrypted text for 
each field. The operations in the structure have the same functions as those in the 
original structure and have the same functions as the homomorphic ones. 

2. Certain functions will need to be intercepted and have different results. 

Julia has the opportunity to apply these two things. This is done through your own 
compiler through the Cassette.jl9 function. Requirement number 2 can be rewritten 
as follows: 

 

In the final implementation the user must apply everything very quickly: 

 

                                                           
9 https://github.com/JuliaLabs/Cassette.jl 



JOURNAL OF INFORMATION SYSTEMS & OPERATIONS MANAGEMENT, Vol. 15.1, July 2021 

80 

 

Of course, certain things may not be optimal. ℛ ring - the function that modifies 
mods, keyswitch, etc. - can lead to the establishment of certain rules between 
accuracy, security and performance. The final product implies that the compiler 
analyzes, runs encrypted and parameterizes the code. Finally it generates the 
program. 

Conclusion 

The automatic creation and execution of safe calculations is a desideratum of any 
programmer and system. The metaprogramming system built by Julia can be used 
as a development platform. There are already attempts in this regard made by 
RAMPARTS to bring the Julia code to a library (PALISADE FHE). Lately, 
computing systems have achieved the performance of cryptographic information in 
homomorphic system with effective evaluation come close to practical utility. The 
future is near. Using research in the development of algorithms, homomorphic 
encryption will become mass technology in the field of user data protection. 

References 

1. https://github.com/JuliaCrypto/ToyFHE.jl 
2. https://github.com/FluxML/Flux.jl 
3. https://aws.amazon.com/machine-learning/ 
4. https://github.com/JuliaLabs/Cassette.jl 
5. https://eprint.iacr.org/2018/1041.pdf 
6. https://juliaacademy.com/p/introduction-to-machine-learning 
7. https://fluxml.ai/Flux.jl/stable/ 
8. https://eprint.iacr.org/2016/421.pdf 
9. https://palisade-crypto.org/ 
10. https://github.com/microsoft/SEAL 
11. https://www.cs.cmu.edu/~odonnell/hits09/gentry-homomorphic-

encryption.pdf 


